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ACCURACY OF ESTIMATING  THE LOCATION OF A LANDED SPACECRAFT 

ON  MARS FROM RANGE AND RANGE-RATE DATA 

By W. Thomas  Blackshear  and  James R. Williams 
Langley  Research  Center 

SUMMARY 

This  paper  presents  an  analysis of the  accuracy of earth-based  range-rate  and 
range  data  for  determining  the  location of a spacecraft  landed  on Mars. Statistics  on  the 
landed  spacecraft  location  are  presented  parametrically  for  several  tracking  schedules. 
These  statistics  are  based  on  linearized  equations of motion  and  include  effects of data 
measurement  errors and of uncertainties  in  the  tracking  station  locations,  in  the  ephem- 
e r i s  of Mars, and  in  the  Martian  rotational  period  and  rotational axis orientation. 

It is shown that substantially  improved  estimates of the  Martian  pole  location, 
spacecraft  longitude,  and  distance off the  Martian axis of rotation  can be obtained  from 
analysis of range-rate  data only. This  result is shown to be  affected  little  by  considera- 
tion of current  uncertainties  in  the  Martian  ephemeris  or by the  uncertainties  anticipated 
by 1976. The  single  exception  to a substantially  improved  estimate is the  distance of the 
landed  spacecraft  from  the Mars equatorial  plane.  Accuracy of estimating  this  param- 
eter  is shown to be strongly  dependent  upon  the  Martian  ephemeris  uncertainties. It is 
also shown  that  range  data  are  the  primary  source of information  on this parameter. 

INTRODUCTION 

The  Viking  1975  missions are  designed  to  land two spacecraft on the  surface of 
Mars. Precise  analysis of subsequent  telemetry  data will require  accurate knowledge of 
the  position of the  landed  Spacecraft.  The  purpose of this  paper is to  present  results of 
preliminary  studies of the  accuracy of determining  the  spacecraft  location  from  earth- 
based  range  and  range-rate  measurements. 

Estimates of the  position of the  spacecraft  are  assumed  to be obtained by a con- 
ventional  weighted  least-squares  analysis  in which the  tracking data are unbiased, the 
data  noise is uncorrelated,  and  the  weighting  matrix is the  inverse of the  noise  convari- 
ance  matrix.  Covariance  matrices for parameters defining  the  spacecraft  location are 
calculated  for  range  and  range-rate  data  independently  and  in  combination.  These  covari- 
ance  matrices  include  the  effects of certain  model  errors which may not  be  refined  except 
by extensive  postflight  analysis. (See ref. 1.) 
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SYMBOLS 

matrix of partial  derivatives  relating y to x 

matrix of partial  derivatives  relating y to  p 

covariance of ( ) 

expected  value  operator 

angular  displacements of Mars axis of rotation 

vector of parameters  describing  observation  model  errors 

normal  distance  from Mars axis of rotation 

vector of parameters  to be  estimated 

an  estimate of x 

vector  observable 

distance  from  Mars  equator  parallel  to axis of rotation 

angle  from  spacecraft  zenith 

random  noise  vector 

longitude  measured  in Mars equatorial  plane 

a covariance  matrix 

Subscripts: 

1,2 ,3  ,%,e ,P denotes  parameter  to which a matrix  corresponds 
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Superscripts: 

-1 denotes  matrix  inversion 

T denotes  transpose of a matrix 

PROCEDURES AND METHOD OF ANALYSIS 

The  results  presented  herein  are  based on  two  possible  types of tracking  data: 
earth-based  range  (light  travel  time),  and  earth-based  range rate (Doppler  frequency). 
Both range  and  range-rate  data are assumed  to  be  unbiased  and  to  have a random  noise 
of 15 meters  and 1 mm/sec,  respectively. (See ref. 1.) Periods of occultation  being 
excluded,  both  data  types  could  be  available  almost  continuously.  However, it is antici- 
pated  that  more  refined  mission  definition will limit  this  availability  because of power 
and  telemetry  considerations,  and  antenna  pointing  capabilities. Such data  limitations 
have  been  simulated by specifying a cone with its vertex at the  landed  spacecraft;  tracking 
data  are  assumed  to be available when the  earth  tracking  station  lies  within  this  cone. 
(See  fig. 1.) The  following  sections  discuss  the  sources of model e r r o r s  and  the  proce- 
dures  utilized  to  obtain  standard  deviations  associated with the  parameters of interest. 

Lander  Location 

Location of a landed  spacecraft  on  the  surface of Mars is described  relative  to  the 
Martian  equator  and axis of rotation.  The  three  necessary  coordinates  are  chosen  to be: 
Z (distance  along  the axis of rotation), rspin (distance  normal  to  the  axis of rotation), 
and X (longitude).  (See  fig. 1.) Since  the  tracking  data  are  those  obtained  between  the 
landed  spacecraft  and  the  earth  tracking  stations,  analysis of these  data  requires  refer- 
encing  both  the  spacecraft  and  tracking  station  to a common  coordinate  system. A logical 
system is one referred  to  the  earth  equator and  equinox since  this  system is the  one  in 
which planetary  observational  data  are  taken  to  describe  the  planetary  ephemerides. 

The first phase of the  transformation  from body-fixed axes  in Mars to body-fixed 
axes  in  the  earth  requires knowledge of the  direction of the axis of rotation of Mars. 
Uncertainty  in  the  current knowledge of this  direction is on  the  order of lo. (See ref. 2.) 
E r r o r s  in  orientation of the axis of rotation  are  treated  herein as two  rotations, P and 
Q, relative  to  an  assumed  direction.  The  rotation P is an angular  displacement  in 
declination  and -Q is an angular  displacement in aerocentric  right  ascension.  These 
parameters  are  illustrated  in  figure 2. 

The  second  phase of the  transformation is the  translation  from  the  center of mass 
of Mars to  that of the  earth.  This  translation is obtained by use of the  ephemeris of Mars. 
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Current  uncertainties  in  the  ephemeris  position of Mars are of the  order of 200 to  
400 kilometers,  but are expected to  be  reduced  to  5  to  10  kilometers by postflight  analy- 
sis of the  1971  Mars  orbiter  missions. (See refs. 1 and 3.) This  position  uncertainty 
is shown to affect the  range  data  primarily. For this  analysis it is assumed  that  the 
ephemeris  was  generated by numerical  integration  to  yield a continuous  Martian  orbit, 
and  velocity  uncertainties are estimated at 5 X lom7 km/sec.  This  uncertainty is shown 
to affect the  range-rate  data  primarily. 

The  final  phase of the  transformation  relates  tracking  station  locations  to  the  earth 
coordinate  system.  These  locations  have  been  well  defined  and no significant  improve- 
ment is anticipated. 

A summary of standard  deviations  associated with these  error   sources  is given  in 
table I. Values  in  this  table  were  obtained  from  reference 1. Included  in  this  table  are 
a priori  spacecraft  uncertainties which can  result  from  Martian  entry  trajectory  analysis. 

TABLE I.- A  PRIORI STANDARD  DEVIATIONS 

r" 
- 

Parameter  

r -  Lander  longitude . . . . . . . . . . . . . . . . . . . . . . . . . .  
Lander  distance off axis of rotation . . . . . . . . . . . . . . . .  
Lander  Z-component . . . . . . . . . . . . . . . . . . . . . . . .  
Martian  polar  locations . . . . . . . . . . . . . . . . . . . . . . .  
Martian  rotational  period . . . . . . . . . . . . . . . . . . . . . .  
Tracking  station  Z-component . . . . . . . . . . . . . . . . . . .  
Tracking  station longitude . . . . . . . . . . . . . . . . . . . . .  

Anticipated . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ephemeris  velocity of Mars . . . . . . . . . . . . . . . . . . . .  

Tracking  station  distance off axis of rotation . . . . . . . . . . .  

Ephemeris  position of Mars: 

Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~~ 

Standard  deviation 

1.7 X radian 
40 km 

100  km 
1.7 X 10-2 radian 

5 x h r  
0.0015 km 

0.025 km 
4.7 X radian 

5  km 
200 km 

5 X km/sec 

Statistical Model 

The statistical model is based on the  assumption  that  the  estimation  utilizes a 
weighted  least-squares  process  in which the  data  are  unbiased,  the  data  noise is uncor- 
related,  and  the weighting matrix is the  inverse of the  noise  covariance  matrix.  This 
estimator is characteristic of processes  currently  in  use  for  orbit  determination  and 
parameter  estimation.  These  procedures  generally  assume  linearized  equations of 
motion  and  in  this  report  only  statistics  associated with these  linearized  equations are 
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analyzed.  The  following  discussion  develops  the  covariance  matrix  associated  with  this 
estimator  for a single  data  type  and  the  covariance  matrix  associated  with  the  minimum 
variance  combination of estimates  from  independent  data  types. 

Let x be a vector of parameters  to be estimated;  y,  the  vector  observable;  p, 
a vector of parameters which includes  observation  model  uncertainties; and E ,  the  vector 
representing  the  noise  on  the  data.  To  generate  statistics  on  the  estimator 2 of x, it 
is assumed  that  p is a random  vector  with  mean  zero (E(p) = 0) and known covariance 
cov(p) = Ap. Further, it is assumed  that  E(€) = 0, COV(E) = A € ,  and  E(peT) = 0. The 
latter  assumption asserts that  model  errors  and  measurement  errors  are  uncorrelated. 

The  linearized  equation  relating  the  observations  to  the  parameters is 

d y = A d x + C p + €  (1) 

where  the  true  value of x is obtained by adding dx to  the  initial  estimate of x, and 
A and C are   matr ices  of partial  derivatives.  The  weighted  least-squares  estimate 
d? of dx is given by (ref. 4) 

d? = ATAmlA ATAZ1 dy ( E )-l 

Note  that E(&) = d x ;  hence, d;i is an  unbiased  estimate of dx. Under  these  assump- 
tions,  the  covariance of d? is 

A2 = E k d x  - & ) ( d x  - d?)g 

Equation (3) applies  to  the  estimation of x from a single data source. 

Suppose that two vector  estimates Gl and ic2 of x have  been  obtained  from 
two  independent  data  sources  and  that  their  respective  covariances  are A;l and A;; . 
It is then  desirable  to  combine  these  two  independent  estimates  to  yield one "optimal" 
estimate ?3 of x. 

2 

If optimal is defined  to  mean  linear,  unbiased,  minimum  variance,  then i ,  is given 
by (ref. 4) 

?, = (Ai: + A, -1 ) -1 ( A, -1, x1 + A*'i2) 
x2 x1 x2 

and 



Equation (5) is the  form  used  in  this  paper  to  combine  estimates  resulting  from  range, 
range-rate,  and a priori  analyses. 

RESULTS AND DISCUSSION 

An analysis of the  accuracy of determining  the  location of a Martian  lander  (landed 
spacecraft)  has  been  performed  for  an  assumed  lander  areographic  location; 112.43O lon- 
gitude, 24.710 latitude,  and  3393.4-kilometer  radius.  This  location  passes  through  the 
Earth-Mars  line  on  July 23,  1976.  Range and  range-rate  tracking  data are assumed  to 
be  available  from  this  date.  This  location is possible  for Viking 1975  landings  and  the 
selection of July  23 as an  analysis  epoch agrees with a possible landing time  for  the first 
Viking spacecraft. 

Range-rate  and  range  data are assumed  to be sampled at &minute  intervals.  Three 
earth-based  tracking  stations of the NASA deep  space  network  were  considered: 
Goldstone,  California;  Woomera,  Australia;  and  Madrid,  Spain.  These  stations are sepa- 
rated by approximately 1200 in longitude  and  thus  provide  continuous  viewing of Mars. 
The  availability of data is controlled by specifying  the cone of visibility  described  earlier. 
This cone is specified by assigning a value of the  permissible  angle  from  the  lander 
zenith a! at which data  can be taken.  Three  values of zenith  angle  were  considered: 
5O,  45O, and 90°. These  angles  correspond  approximately  to 45  minutes,  6  hours,  and 
12  hours of tracking  per  day. For each of these  zenith  angle  values,  data  representing 
1, 2, 5, 10, and  15  days of tracking  were  assumed. 

The  solution set corresponding to each of these  tracking  schedules  generally con- 
sisted of lander  longitude, rspin, Z ,  and  the  components of Martian  pole  location, P 
and Q. The  exceptions are the  cases  for 5 O  zenith  angle  for 1- and 2-day tracking  inter- 
vals  during which insufficient  data  were  available  to  obtain a solution  because of linear 
correlations between the  parameters.  Results of this  analysis  are  presented  in  fig- 
ures  3 to 7 in  the  form of standard  deviations  for  each  parameter  in  the  solution set. 
These  standard  deviations  represent  the  combined  results of data  analysis  and a pr ior i  
statistics. (See table I.) 

Figure 3  shows  standard  deviations of the  solution  parameters, for each  zenith 
angle  value, as a function of time  for  range-rate  and  range  data  separately. In each of 
these cases, no model errors  were  assumed.  Thus,   the  curves  in figure 3 represent  the 
minimum  uncertainty  in  determining  the  lander  location  that  can  be  achieved  once all 
other  significant  sources of data  bias  have  been  removed.  Figure  3  can  be  summarized 
by stating  that  range-rate  and  range are roughly  equivalent  data  types with regard  to 
determining  lander  location,  the one important  exception  being  the  determination of the 
Z-component. By referring  to  figure  3(c), it can  be  seen  that  extensive  range-rate 

6 



tracking would be  required  to  reduce  the  Z-component  uncertainty  to  the  1-kilometer  level. 
To reduce  the  uncertainty  to  this  level, it appears  that  sufficient  time  must  be  allowed for 
the  Earth-Mars  geometry  to  change  significantly.  In  contrast  to  the  range-rate  data,  the 
range  data is seen  to  be an inherently  stronger  data  type for determination of the  lander 
Z -component. 

The  results in figure 3 are  idealist ic by current  standards in that no model e r r o r s  
are  assumed.  As  stated  earlier,  values of tracking  station  locations,  Martian  ephemeris 
position  and  velocity,  and  the  rotational  period of Mars are  uncertain enough to  create 
data  biases. By using  the  formulas  given  in  the  section on the  statistical  model,  the 
effects of these  error  sources on  the  accuracy of estimating  the  solution  set  parameters 
were  calculated.  Figure 4 presents  these  results by assuming  the a priori  standard 
deviations  listed  in  table I and by using  the  5-kilometer  ephemeris  position  uncertainty. 
Comparison of figure 4 and  figure 3 shows  the  range-rate  data  analysis  to  be  little  affected 
by these  error  sources.  However,  considerable  degradation  in  the  range  data  analysis is 
apparent.  Comparison of the two data  types  indicates  range  rate  to  be far superior  to 
range  for  the  estimation of all parameters,  excluding  the  Z-component. By referring  to 
figure  4(c)  the  range-rate  estimate of Z,  under  the  influence of the  stated  error  sources,  
is shown to be degraded  by  the  extension of tracking  time.  In  contrast,  range is still a 
relatively  strong  data  type  for  determination of Z. Again, it appears  that if sufficient 
time is permitted  to  elapse so  that  the  Earth-Mars  geometry is significantly  changed,  an 
uncertainty of about 10 kilometers  in Z may be achieved  through  analysis of range  data. 

A s  stated  earlier,  the  5-kilometer  ephemeris  position  uncertainty is not a current 
estimate, but rather a value  anticipated by 1976.  The results shown  in  figure 5 represent 
reevaluations of the  cases  summarized  in  figure 4, utilizing a more  current  ephemeris 
uncertainty of 200 kilometers.  These  results  again  indicate  that  the  range-rate  analysis 
(excluding  the  Z-component  estimate) is not severely  degraded.  However,  in  this  situation 
the  range  data  are  sufficiently  biased  to  make it a poor  data  type  in  comparison  with  range 
rate.  Even  for  the  Z-component  estimation shown in  figure  5(c),  range  does  not  yield 
a good independent  estimate.  The  possibility of improving  these  results by including  the 
ephemeris  position  and  velocity  in  the  solution  set was considered.  However,  even  the 
case  for  the 90° zenith  angle  and  15  days  tracking  provided  insufficient  data  to  obtain 
this  solution.  For  example,  an  analysis of range-rate d-ata representing  15  days with 
approximately 12  hours of tracking  per  day  yielded  standard  deviations  on  lander  longi- 
tude,  distance off the  axis of rotation,  and  pole  location of approximately 2 X radian, 
0.1 kilometer,  and 4 X radian,  respectively.  These  standard  deviations  are  sub- 
stantially  less  than  the  respective a priori  values of 1.7 X radian, 40.0 kilometers, 
and 1.7 X lom2 radian.  The  possibility of achieving  better  results  through  combining 
data  types is then an obvious a rea  of investigation.  This  combination  has  been  accom- 
plished by use of equation (5). 
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Figure  6  presents  the  results of combining  the  range-rate  and  range  estimates 
given  in  figure 4. Because of the  accuracy of determination from range-rate  analysis 
alone,  little  improvement  was  gained  except  in  the  Z-component.  Comparison of fig- 
ures  4(c) and 5(c) shows  substantial  improvement  in  the  estimate of Z  owing to  the 
inclusion of range  data.  The  rapid  reduction of this  uncertainty  to  an  essentially  constant 
value as shown  by the  curves  in  figure  6(c)  illustrates  that  this  improvement  can  be 
achieved  with  the  use of very  little  range  data.  This  result  implies a possible  mode of 
spacecraft  tracking which  would consist  primarily of range-rate  tracking,  supplemented 
by range  data  taken on a noninterference  basis. 

The  results  obtained by utilizing  the  200-kilometer  ephemeris  position  uncertainty 
a re  given  in  figure  7  and  should be compared with those of figure 4. As before,  little 
improvement  beyond  the  range-rate  only  analysis is noted  except  in  the  Z-component. 
Comparison of figures 5(c) and 7(c) shows  range  data  to  be  essential  in  obtaining any sig- 
nificant  reduction  in  the  uncertainty  in  the  Z-component.  However,  the  estimation  accu- 
racy is still rather  poor  although  indications  are  that  considerably  longer  tracking  inter- 
vals would yield  further  improvement.  This  large  uncertainty  points out the  need  for 
Martian  ephemeris  improvement.  Based on the  impact of ephemeris   errors  on this  anal- 
ysis,  primarily  through  their  effect  on  range  data, it appears  that  analysis of range  data 
could  yield  significant  reductions  in  these  errors.  However,  such  analysis will probably 
require  data  taken  over  extended  periods of time  in  order  to  take  advantage of the changing 
Earth-Mars  geometry. 

CONCLUDING REMARKS 

This  paper  has  presented  an  analysis of the  accuracy of range-rate  and  range  data 
for  determining  the  location of a Mars  lander.  It  has  been shown  that  relatively  accurate 
estimates of the  Martian  pole  location,  lander  longitude,  and  distance off the  Martian axis 
of rotation  can  be  obtained  from  analysis of range-rate  data only. For example,  an  anal- 
ysis  of range-rate  data  representing  15  days with approximately 1 2  hours of tracking  per 
day  yielded  standard  deviations on lander  longitude,  distance off the axis of rotation, and 
pole  location of approximately 2 X 10-5  radian, 0.1 kilometer,  and 4 X loe5 radian,  respec- 
tively.  These  standard  deviations  are  substantially  less  than  the  respective a priori  
values of 1.7 X lom2 radian, 40.0 kilometers,  and 1.7 X radian.  This  result was 
shown  to be little  affected by the  consideration of current  uncertainties  in  the  Martian 
ephemeris o r  by the  uncertainties  anticipated  for 1976.  The  single  exception  to  an  accu- 
rate  estimate is the  lander  Z-component  (distance of landed  spacecraft  from  the  Mars 
equatorial  plane). 

When the  Martian  ephemeris  errors  anticipated for 1976 were  considered, it was 
shown that  the  range-rate  data only  yielded  an  uncertainty of approximately 60 kilometers 
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in  the Z-component after 15  days  tracking.  This  value  was  reduced  to  approximately 
10  kilometers by the  inclusion of a very  limited  amount of range data. This  result 
implies a possible  tracking  scheme  consisting  predominantly of range-rate  data,  aug- 
mented by limited  amounts of range  data  taken on a noninterference  basis. 

When the  Martian  ephemeris  errors of the  magnitude  currently  estimated are con- 
sidered,  15  days of range-rate  tracking  yields  essentially no  reduction in the  uncertainty 
in  the lander Z-component.  Combining 15  days of range  and  range-rate  data  reduces 
this  uncertainty  to  approximately 60 kilometers.  This  result  points  to a definite  need 
for  Martian  ephemeris  improvement. Such  improvement  could  possibly  be  achieved 
through  analysis of range  data  representing  extended  periods of time,  during which the 
Earth-Mars  geometry would have varied significantly. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton,  Va.,  November  12, 1970. 
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Figure 3.- Continued. 
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Figure 4.- Standard  deviations of landed  spacecraft  location  parameters  from  analysis 

of range  and  range-rate  data  independently. Model uncertainties  are  considered, 
the  Mars  ephemeris  position  uncertainty  assumed  to  be 5 kilometers. 
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Figure 5.- Standard  deviations of landed  spacecraft  location  parameters  from  analysis 
of range and range-rate  data independently.  Model uncertainties are considered, 
the  Mars  ephemeris  position  uncertainty  assumed  to  be 200 kilometers. 
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Figure 6.- Standard  deviations of landed  spacecraft  location  parameters  based on 
minimum  variance  combination of independent  range  and  range-rate  estimates. 
Model uncertainties are considered,  the  Mars  ephemeris  position  uncertainty 
assumed  to  be 5 kilometers. 
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Figure 7.- Standard  deviations of landed  spacecraft  location  parameters  based on 

minimum  variance  combination of independent range  and  range-rate  estimates. 
Model uncertainties  are  considered,  the  Mars  ephemeris  position  uncertainties 
assumed  to  be 200 kilometers. 
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